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Abstract. Several approximations are tested by calculating the ground-state energy and the energy of the
first excited 0+ state using an exactly solvable model with two symmetric levels interacting via a pairing
force. They are the BCS approximation (BCS), Lipkin-Nogami (LN) method, random-phase approximation
(RPA), quasiparticle RPA (QRPA), the renormalized RPA (RRPA), and renormalized QRPA (RQRPA).
It is shown that, in the strong-coupling regime, the QRPA which neglects the scattering term of the
model Hamiltonian offers the best fit to the exact solutions. A recipe is proposed using the RRPA and
RQRPA in combination with the pairing gap given by the LN method. Applying this recipe, it is shown
that the superfluid-normal phase transition is avoided, and a reasonably good description for both of the
ground-state energy and the energy of the first excited 0+ state is achieved.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.60.-n Nuclear-structure models and
methods

1 Introduction

The random-phase approximation (RPA) [1,2] is one of
the most popular method in the theoretical microscopic
study of nuclear structure. It includes the correlations be-
yond the mean-field models such as the Hartree-Fock (HF)
approximation with a phenomenological interaction, e.g.,
the Skyrme interaction. Being also a computationally sim-
ple method, the RPA serves as a powerful tool in treat-
ing all the excited states in nuclei, which are beyond the
reach of the full diagonalization within a shell-model basis.
The quasiparticle RPA (QRPA), in which the quasiparti-
cle correlations and excitations are considered, has shown
its prominent role in treating the open-shell nuclei, where
the superfluid pairing correlations are important.

Recent developments in nuclear structure including β-
decay and double-beta (ββ) -decay physics, the study of
various types of giant resonances, and the prospect of us-
ing radioactive beams to study nuclei far from the line
of β-stability have sparked off a renewed interest in the
efficiency of the RPA compared to other microscopic cal-
culations [3]. More refined and exact treatments of the
pairing problem in nuclei have also been proposed in [4].

Recently the accuracy of the RPA in describing the
binding energies has been tested using the HF+RPA cal-
culations within schematic exactly solvable models [5,6]
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as well as for nuclei throughout the sd-shell and the lower
pf -shell [7]. The tests using exactly solvable Lipkin mod-
els [5,6] has shown that the HF+RPA (QRPA) calcula-
tions yield a very good ground-state energy except for the
region of the pairing interaction around the point where
the pairing gap collapses. Meanwhile, the tests using more
realistic shell-model Hamiltonian have pointed out that
the binding energy predicted by RPA is generally, but not
always, satisfactory [7,8]. A number of suggestions have
been made to improve the reliability of the RPA. They
can be classified into two groups. The first group includes
the approaches to improve the treatment of pairing cor-
relations. Among them are the Hartree-Fock-Bogolyubov
(HFB) + QRPA, the number projection [2], the varia-
tional method using boson expansion [9], and the Lipkin-
Nogami (LN) method [10,11]. The LN method is an ap-
proximation to remove the fluctuations due to the viola-
tion of particle number conservation of the BCS approxi-
mation, which leads to the collapses of the pairing gap at
a certain critical value of the pairing interaction. The sec-
ond group includes various treatments of the ground-state
correlations beyond RPA, which occur due to the violation
of the Pauli principle when the quasiboson approximation
is used within the RPA or QRPA. In a way similar to
the particle number violation within the BCS approxima-
tion, the violation of the Pauli principle by treating the
fermion pairs as bosons within the quasiboson approxima-
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tion leads to the collapse of the RPA at a critical value of
the interaction parameter. Various approaches have been
proposed to renormalize the RPA (QRPA) to remove this
inconsistency [12–17].

Since the RPA, first of all, is a theory of excited states,
an improvement of the accuracy of the RPA should give,
as a first step, a better description for both of the energies
of the ground state and the first excited state simultane-
ously. In the present paper, we are going to propose a
recipe for such improvement using existing approximation
schemes, namely the LN method for the pairing gap and
the renormalized RPA (renormalized QRPA) to treat the
ground-state correlations beyond RPA. In order to com-
pare the result with the exact solution, we limit ourselves
to the study of the ground state and the first excited
0+ state within a well-known exactly solvable two-level
model, which was introduced for the first time in ref. [18],
and widely used in the study of pairing correlations.

The paper is organized as follows. The pairing Hamil-
tonian applied to the two-level model is discussed in
sect. 1. The BCS approximation, the LN method, and the
results obtained within these approximations for the pair-
ing gap in the two-level model under consideration are
summarized in sect. 2. The RPA, QRPA and their renor-
malized versions are presented in sect. 3, where the results
for the ground-state energy and energy of the first excited
0+ state are analysed. Also discussed in the same section
are results obtained following a recipe which combines the
LN method and the renormalized QRPA (renormalized
RPA). The last section summarizes the paper, where con-
clusions are drawn.

2 Pairing Hamiltonian

We consider the well-known pairing Hamiltonian of
nucleons interacting via a pairing force between the
time-conjugate orbitals with angular-momentum quantum
number j

H =
∑

j

εjNj −G
∑
jj′

√
Ωj

√
Ωj′A†

jAj′ , (1)

where εj are the single-particle energies, and G is the
pairing constant. The nucleon number operator for the
j-shell is

Nj =
∑
m

a†jmajm . (2)

The pairing operators A†
j and Aj are given by

A†
j =

1√
Ωj

∑
m>0

a†jma†jm̃ , Aj = (A†
j)† , (3)

where the tilde denotes the time-reversal operation,
e.g. a†jm̃ = (−1)j−ma†j−m. These operators satisfy the
following commutation relations:

[Aj , A
†
j′ ] = δjj′

(
1 − Nj

Ωj

)
, (4)

[Nj , A
†
j′ ] = 2δjj′A†

j , [Nj , Aj′ ] = −2δjj′Aj . (5)

The exact solutions of this pairing Hamiltonian have been
found in ref. [19] and known as the Richarson’s solution.
In the present paper, we consider only a simple schematic
model. It has N particles occupying two levels with the
same shell degeneracy Ω = j+1/2, so that Ω = N/2. The
upper level simulates the degenerates states with energy
ε/2 and magnetic quantum numbers m (0< m ≤ Ω), while
the lower level is for the states with energy −ε/2 and the
magnetic quantum numbers −m. The distance between
two levels is, therefore, ε, which will take the value equal to
1 MeV in all calculations in this paper. The exact solution
in this case is easy to be found using the SU(2) algebra,
which the operators J+ =

√
ΩjA

†
j , J− = (J+)†, and

J0 = (Nj −Ωj)/2 obey. This leads to the diagonalization
of the Hamiltonian (1), whose matrix elements are

〈J,M ′
1,M

′
2|H|J,M1,M2〉 = −ε(M1−M2)δM1,M ′

1
δM2,M ′

2

−G[2J(J + 1) −M1(M1 − 1)
−M2(M2 − 1)]δM1,M ′

1
δM2,M ′

2

−G
√

J(J + 1) −M1(M1 − 1)

×
√

J(J + 1) −M2(M2 + 1)δM1,M ′
1+1δM2,M ′

2−1

−G
√

J(J + 1) −M1(M1 + 1)

×
√

J(J + 1) −M2(M2 − 1)δM1,M ′
1−1δM2,M ′

2+1 , (6)

with J = Ω/2 and −J ≤ Mi ≤ J (i = 1, 2). Among the
obtained eigenenergies Ei, the lowest one, E0, is the exact
ground-state energy, while the exact energy ωex of the
first excited 0+ state is ωex = E1 − E0 .

It is convenient to study a fermion system with super-
fluid pairing using the Bogolyubov transformation from
particle operators a†jm and ajm to the quasiparticle ones,
α†

jm and αjm. The quasiparticle representation of the
Hamiltonian (1) is given in [18,20], which we quote here
again for convenience in further discussions:

H = a +
∑

j

bjNj +
∑

j

cj(A†
j + Aj)

+
∑
jj′

djj′A†
jAj′ +

∑
jj′

gj(j′)(A†
j′Nj + NjAj′)

+
∑
jj′

hjj′(A†
jA†

j′ + Aj′Aj) +
∑
jj′

qjj′NjNj′ . (7)

Here Nj is the operator of the quasiparticle number on the
j-shell, while A†

j and Aj are the creation and destruction
operators of a pair of time-conjugate quasiparticles:

Nj =
∑
m

α†
jmαjm , A†

j =
1√
Ωj

∑
m>0

α†
jmα†

jm̃ ,

Aj = (A†
j)† . (8)

Their commutation relations are similar to those for nu-
cleon operators in eqs. (4) and (5), namely

[Aj ,A†
j′ ] = δjj′

(
1 − Nj

Ωj

)
, (9)
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[Nj ,A†
j′ ] = 2δjj′A†

j , [Nj ,Aj′ ] = −2δjj′Aj . (10)

The coefficients in eq. (7) are

a = 2
∑

j

Ωjεjv
2
j −G

∑
j

Ωjujvj

2

−G
∑

j

Ωjv
4
j , (11)

bj = εj(u2
j − v2

j ) + 2Gujvj

∑
j′

Ωj′uj′vj′ + Gv4
j , (12)

cj = 2
√

Ωjεjujvj −G
√

Ωj(u2
j − v2

j )

×
∑
j′

√
Ωj′uj′vj′ − 2G

√
Ωjujv

3
j , (13)

djj′ = −G
√

ΩjΩj′(u2
ju

2
j′ + v2

j v
2
j′) = dj′j , (14)

gj(j′) = Gujvj

√
Ωj′(u2

j′ − v2
j′) , (15)

hjj′ =
G

2

√
ΩjΩj′(u2

jv
2
j′ + v2

ju
2
j′) = hj′j , (16)

qjj′ = −Gujvjuj′vj′ = qj′j , (17)

where uj and vj are the coefficients of the Bogolyubov
transformation. Hereafter we will refer to the terms at the
right-hand side (RHS) of eq. (7), which contain the coeffi-
cients aj , bj , etc. as the a-term, b-term, etc., respectively.

3 Gap equations

3.1 BCS approximation

The BCS equation is usually obtained using the varia-
tional procedure to get the minimum of the average value
of H − λN̂ (λ is the chemical potential, N̂ =

∑
j Nj is

the particle number operator) over the BCS ground state
taken as the quasiparticle vacuum |0〉α, i.e. αjm|0〉α = 0,
where |0〉α =

∏
j,m>0(uj + vja

†
jma†jm̃)|0〉 with ajm|0〉 = 0.

Within the BCS approximation, only the a-term in eq. (7)
contributes, which leads to the well-known BCS equation
to determine the gap ∆ and chemical potential λ:

∆ = G
∑

j

Ωjujvj , N =
∑

j

Ωj

(
1 − ε′j − λ

Ej

)
, (18)

where the single-particle energy is ε′j = εj if the self-
energy term −Gv2

j is neglected, or ε′j = εj − Gv2
j if the

self-energy term is included. The quasiparticle energy is
Ej =

√
(ε′j − λ)2 + ∆2. The uj and vj coefficients are

given as

u2
j =

1
2

(
1 +

ε′j − λ

Ej

)
, v2

j =
1
2

(
1 − ε′j − λ

Ej

)
. (19)

The a-term (eq. (11)) is actually the ground-state energy
within the BCS approximation, since this is the only term
that remains in the average over the quasiparticle vacuum

|0〉α, where the second term can be now replaced with
−∆2/G using the BCS equation (18).

In the present two-level model, using the BCS equa-
tions (18) and the property u2

i + v2
i = 1 with i = 1 (lower

level) or 2 (upper level), it is easy to see that the quasi-
particle energy E and the chemical potential λ are state
independent, namely

E1 = E2 = E = GΩ , λ = −G

2
. (20)

The gap ∆ and the u and v coefficients are [6]

∆ = GΩ

√
1 −

[
Gcr

G

]2

, (21)

u2
1 = v2

2 =
1
2

(
1 − ε̃

2GΩ

)
= u2,

v2
1 = u2

2 =
1
2

(
1 +

ε̃

2GΩ

)
= v2 , (22)

where

ε̃ =

 ε , neglecting the self-energy term,

2Ωε/(2Ω − 1) , including the self-energy term,
(23)

and
Gcr =

ε̃

2Ω
. (24)

The BCS ground-state energy in this model becomes

EBCS = Ωε(1 − 2v2) −∆2/G−GΩ(u4 + v4) =
−ε2/2G−∆2(1 − 1/2Ω)/G−GΩ ,

neglecting the self-energy term,

−ε2/(2G(1 − 1/2Ω)) −∆2(1 − 1/2Ω)/G−GΩ ,
self-energy term included.

(25)

This shows that the effect of the self-energy term on the
ground-state energy becomes negligible at a large particle
number when 1/2Ω 
 1. The major drawback of the BCS
method is that the BCS wave function is not an eigenstate
of the particle number operator N̂ . Therefore, the particle
number fluctuations ∆N2 = α〈0|N̂2|0〉α − α〈|0N̂ |0〉2α =
4
∑

j Ωj(ujvj)2 = 2∆2/G2Ω [20] cause the inaccuracy of
this method. Using the exact commutation relation (9),
and α〈0|Nj |0〉α = 0, we see that

α〈0|[Aj ,A†
j′ ]|0〉α = δjj′ , α〈0|[Nj ,A†

j′ ]|0〉α = 0 ,

(26)
which imply that, within the BCS approximation, the
quasiparticle-pair operators A†

j and Aj behave like bosons
(the so-called Cooper pairs). Such violation of the Pauli
principle between quasiparticles has the same origin as the
quasiboson approximation used in the RPA, which will be
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discussed in the next section. This leads to the collapse of
the pairing gap at the critical value Gcr, below which the
BCS equations (18) yields the imaginary solution. In the
present two-level model, Gcr is given by eq. (24). Such kind
of critical behavior inspired a speculation of the existence
of a phase transition from the normal phase, where the
gap is absent, to the superfluid phase with a nonzero gap.
In the absence of the pairing gap, only the sum over the
hole (h) states remains in the expression for the ground-
state energy (11), as vh = 1 and vp = 0. This gives the HF
ground-state energy within the present two-level model as

EHF = 〈HF|H|HF〉 =

2
∑
jh

Ωjh
εjh

−G
∑
jh

Ωjh
= −Ω(ε + G) , (27)

where |HF〉 =
∏

j a
†
jm|0〉 is the HF ground state. How-

ever, the superfluid-normal phase transition in a system
with a finite particle number is spurious as it does not ex-
ist in the exact calculations [21] as well as in the method
using particle number projection [2], where the gap is fi-
nite at all finite values of G [2]. Since carrying out the
particle number projection in calculations using realistic
spectra is numerically complicate, a simple approximate
number projection has been proposed, which is known as
the Lipkin-Nogami (LN) method [10,11] and summarized
below for the present two-level model.

3.2 Lipkin-Nogami (LN) method

The LN method has gained a great popularity as it pro-
vides a simple and computationally easy way to go be-
yond the pairing mean field. Within this method, the par-
ticle number fluctuations are removed by adding the term
λ2N̂

2, and carrying out the variational procedure over the
average value of H −λN̂ −λ2N̂

2 in the quasiparticle vac-
uum |0〉α. Details of this method is given in ref. [11]. For
the present two-level model, it gives

∆LN = GΩ

√
1 − ε̄2

4G2Ω2
, (28)

u2 =
1
2

(
1 − ε̄

2GΩ

)
, v2 =

1
2

(
1 +

ε̄

2GΩ

)
, (29)

where
ε̄ =

2GΩε

2GΩ + α
, α = 4λ2 −G . (30)

Setting the factor α = 0 recovers the BCS equation with-
out the self-energy term, while setting λ2 = 0 brings back
to the BCS equation including this term. The factor α is
found substituting (uv)2 in the equation for λ2:

4λ2

G
=

Ω − 2(uv)2

2(2Ω − 1)(uv)2
. (31)

This leads to the following cubic equation for α:

α(2Ω − 1)[(α + 2GΩ)2 − ε2] − 2GΩε2 = 0 . (32)
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Fig. 1. Pairing gaps (in units of 2ε) as functions of GΩ/(2ε)
for Ω = 4 (a) and 8 (b). The dotted line denotes the BCS gap
∆ obtained including the self-energy term. The dashed line is
the BCS result neglecting the self-energy term. The solid line
stands for the gap ∆LN given by the LN method.

The ground-state energy is given by

ELN = Ω(u2 − v2) − ∆2
LN

G

−GΩ[1 − 2(uv)2] − 2(α + G)Ω(uv)2 . (33)

The gaps obtained within the BCS approximation and
LN method using eqs. (21) and (28) for Ω = 4 and 8
are plotted against the interaction parameter GΩ/(2ε) in
fig. 1. With decreasing the interaction, the BCS gap ∆
decreases and collapses at Gcr, whose value for the case
when the self-energy term is neglected is smaller than that
obtained including the self-energy term. The LN gap ∆LN,
on the contrary, decreases monotonously with decreasing
G until G = 0, where ∆LN vanishes, showing no signature
of the superfluid-normal phase transition. Hence, by re-
moving the particle number fluctuations, the LN method
erases completely the odd behavior of the BCS gap char-
acterized by this phase transition. The system remains in
the superfluid phase at all nonzero values of the pairing
interaction. It is interesting to see that, due to the sup-
pression of the self-energy term −Gv2 by 4λ2v

2 in the LN
method, the BCS gap without the self-energy correction
is closer to the LN result than the BCS gap including this
correction. By comparing fig. 1 (a) and (b), we also see
that the difference between two BCS versions (with and



N. Dinh Dang: Energies of the ground state and first excited 0+ state... 185

without the self-energy term) decreases significantly when
the particle number increases.

4 QRPA (RPA), its renormalization, and
combination with the LN method

The RPA ground state includes 2p2h-, 4p4h-, 6p6h-, etc.
excitations on top of the HF ground state. The RPA in-
cluding the pairing correlations within the quasiparticle
representation is usually referred to as the QRPA. The
correlations in the QRPA ground state, therefore, are
much richer than the 2p2h-, 4p4h-, etc. correlations in
the “diffuse” (quasiparticle) ground state |0〉α created by
scattering of particle pairs within the BCS approximation.
The LN method takes into account some 2p2h-correlations
beyond the BCS approximation by using the λ2N̂

2 term.
However, this method still uses the same BCS ground
state |0〉α since it approximately expresses the expectation
value of the Hamiltonian with respect to the projected
state in terms of that, with respect to the BCS ground
state [11]. The discussion below is conducted within the
QRPA, where the RPA is obtained as the limit when ∆ =
0. Consequently, we summarize also the main features of
the renormalized QRPA, whose zero-pairing limit is the
renormalized RPA. In the present two-level model, the
QRPA works at G ≥ Gcr, while the RPA is applied at
G < Gcr.

4.1 QRPA

The standard QRPA operators, called phonon operators,
have the following form in the present two-level model:

Q†
ν =

∑
j

(X(ν)
j A†

j − Y
(ν)
j Aj) , Qν = (Q†

ν)† . (34)

The QRPA ground state |0〉Q is defined as the vacuum for
the phonon operator, i.e. Qν |0〉Q = 0 = Q〈0|Q†

ν . The 0+

excited state |0+〉 is obtained by acting Q†
ν on this vac-

uum, i.e. |0+〉 = Q†
ν |0〉Q. The excitation energy ων of the

state |0+〉, and the amplitudes X
(ν)
j and Y

(ν)
j are found,

respectively, as the eigenenergy and the components of the
eigenvector of the QRPA equation, which is derived from
the following equation of motion for the Hamiltonian (7):

Q〈0|[δQ, [H,Q†
ν ]]|0〉Q = ων Q〈0|[δQ,Q†

ν ]|0〉Q . (35)

In the standard way of derivation of the QRPA equations,
the BCS equation is solved first. Then the a- and b-terms
in the Hamiltonian (7) is replaced with the BCS result,
which is HBCS =

∑
j EjNj . Using the exact commutation

relations (9), we see that, among the remaining terms of
(7), which do not contribute in the BCS, the d-, h-, and
q-terms start to contribute within the QRPA. The c-term
and g-term do not contribute since, in the commutation
with the phonon operators (34), the former gives a num-
ber, while the latter leads to the terms ∼ A†

jA†
j′ , ∼ A†

jAj′ ,

and Nj(1−Nj′/Ωj′), which are left out by linearizing the
equation of motion according to (35). Moreover, in order
to obtain a set of QRPA equations, linear with respect
to the X

(ν)
j and Y

(ν)
j amplitudes, another approximation

called the quasiboson approximation is made, which im-
plies that the following approximate commutation relation
holds:

[Aj ,A†
j′ ] = δjj′ , (36)

instead of eq. (9). The definition of phonon operators (34)
and the quasiboson approximation (36) lead to the well-
known normalization of the QRPA X

(ν)
j and Y

(ν)
j ampli-

tudes ∑
j

[X(ν)
j X

(ν′)
j − Y

(ν)
j Y

(ν′)
j ] = δνν′ , (37)

so that the phonon operators are bosons, i.e.

[Qν , Q
†
ν′ ] = δνν′ . (38)

The quasiboson approximation (36) shows that the
quasiparticle-pair operators A†

j and Aj behave like boson
operators when interacting with each other. The effect of
Pauli principle represented by the last term at the RHS of
(9) is just ignored. The set of QRPA equations obtained
in this way is written in the matrix form as(

A B
−B −A

)(
X

Y

)
= ω

(
X

Y

)
. (39)

The explicit form of the matrices A and B depend on the
approximation. Below we compare the results obtained
within the boson and fermion formalisms.

4.1.1 Boson formalism

The boson formalism is based on two following assump-
tions:

a) It considers A†
j and Aj′ as ideal bosons b†

j and bj ,
respectively, according to the quasiboson approximation
(36). The j-shell quasiparticle number operator Nj is then
mapped onto a boson pair as

Nj = 2b†
jbj . (40)

This mapping preserves the commutators (10). The
Hamiltonian (7) can be then fully expressed in terms of
the boson operators b†

j and bj .
b) In deriving the QRPA equations according to (35),

the q-term of the Hamiltonian (7) is neglected. This term
is a special case of the so-called scattering term in the
general Hamiltonian with a two-body residual interac-
tion. For instance, when the residual interaction is sep-
arable, the q-term involves a sum of products of two scat-
tering quasiparticle pairs ∼ B†

jj′(LM)Bj1j′
1
(LM̃), where

Bjj′(LM) = −∑
mm′〈jmj′m′|LM〉α†

jmα
j′m̃′ is the scat-

tering quasiparticle-pair operator. The latter is equal to
Nj/

√
2j + 1 when L = 0. The scattering term is usually
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omitted in most of numerical calculations within QRPA
for realistic nuclei in the literature.

The boson mapping of the phonon operator (34) be-
comes

Q†
ν →

∑
j

(X(ν)
j b†

j − Y
(ν)
j bj) . (41)

The QRPA matrices Ajj′ and Bjj′ have the simple form

Ajj′ = 2Ejδjj′ + djj′ , Bjj′ = 2hjj′ , (42)

which, in the present two-level model, becomes

A11 = A22 = GΩ +
∆2

2GΩ
, (43)

A12 = A21 = − ∆2

2GΩ
, (44)

B11 = B22 =
∆2

2GΩ
, (45)

B12 = B21 = GΩ − ∆2

2GΩ
. (46)

The QRPA equations give one positive solution equal to

ω
(b)
QRPA = 2∆ , (47)

while the spurious state associated with the non-
conservation of particle number is located exactly at zero
energy. We see that the energy of the first excited 0+ state
above the phonon ground state |0〉Q is just twice the pair-
ing gap, the same for the lowest two-quasiparticle excita-
tion above the quasiparticle ground state |0〉α of a system
with an even particle number.

In the normal-fluid phase (∆ = 0), the quasiparticle
operator αjm becomes the particle-(p) creation or hole-
(h) destruction operator depending on whether the level
is located above or below the Fermi level, namely

α†
jm =

{
a†jm if εj > λ ,
−aj−m if εj < λ .

(48)

Therefore, the following boson mapping for operators A†
j

and Aj holds:

A†
j →

{
b†

j if εj > λ ,
bj if εj < λ ,

Aj →
{

bj if εj > λ ,

b†
j if εj < λ .

(49)

The boson mapping for the number operator Nj is given
as

Nj =

{
2b†

jbj if εj > λ ,

2(Ωj − b†
jbj) if εj < λ ,

(50)

which preserves the commutation relations (5) and the
particle number on the j-shell equal to 2Ωj . The RPA
matrices for the two-level model are

A11 = A22 = 2(ε−GΩ) , A12 = A21 = 0 . (51)

B11 = B22 = 0 , B12 = B21 = −2GΩ . (52)

They lead to the RPA phonon energy

ω
(b)
RPA = 2ε

√
1 − G

G
(b)
cr

, G(b)
cr =

ε

2Ω
. (53)

The critical value of G(b)
cr , where the RPA collapses, is the

same collapsing point of the BCS obtained without the
self-energy term (eqs. (23) and (24)). Therefore, in order
to have the superfluid regime start at the same critical
point, the gap ∆ in eqs. (43)–(47) should be calculated
neglecting the self-energy term in the BCS equation (21).
This gives

∆(b) = GΩ

√
1 −

(
ε

2GΩ

)2

. (54)

The phonon energies (47) and (53) are exactly those ob-
tained for the first time in ref. [18] using the space-variable
technique and the gap ∆(b) (54).

4.1.2 Fermion formalism

The fermion formalism does not use directly the quasi-
boson approximation (36). Instead, it employs the exact
commutation relations (9) and (10) to rearrange the re-
sults of calculating the commutators [H,A†

j ] and [H,Aj ]
into the normal order. Then, in the process of lineariz-
ing the equation of motion (35) the following “average”
quasiboson approximation is used:

Q〈0|[Aj ,A†
j′ ]|0〉Q = δjj′ , (55)

assuming that the quasiparticle occupation number nj in
the RPA ground state is zero, i.e.

nj ≡ Q〈0|Nj |0〉Q
2Ωj

= 0 . (56)

The QRPA matrices are obtained in this way as

Ajj′ = 2(Ej + 2qjj)δjj′ + djj′ ,

Bjj′ = 2
(

1 − 1
Ωj

δjj′

)
hjj′ . (57)

Their explicit form in the two-level model is given as

A11 = A22 = GΩ − ∆2

GΩ2
+

∆2

2GΩ
, (58)

A12 = A21 = − ∆2

2GΩ
, (59)

B11 = B22 = − ∆2

2GΩ2
+

∆2

2GΩ
, (60)

B12 = B21 = GΩ − ∆2

2GΩ
. (61)

The BCS equation (21) for the gap ∆ includes the self-
energy term. The 4qjjδjj′ term in the expression for Ajj
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(eqs. (57) and (58)) appears due to the use of the exact
commutation relation (10) to calculate the commutator
between the q-term of the Hamiltonian (7) and A†

j (or
Aj) as follows:∑

j1j′
1

qj1j′
1
[Nj1Nj′

1
,A†

j ] = 4qjjA†
j + 4

∑
j′

qjj′A†
jNj′ . (62)

The last term at the RHS of (62) does not contribute in
the linearization within the QRPA. The first term leads
to the above-mentioned 4qjjδjj′ term. It is worthwhile to
notice that, if one rearranges the quasiparticle operators
in the q-term of (7) to the normal order as∑
jj′

qjj′NjNj′ =
∑

j

qjjNj −
∑

jmj′m′
qjj′α†

jmα†
j′m′αjmαj′m′ ,

(63)
and then drops the last term at the RHS (although there
is no rigorous justification for doing so), the remaining
term in the commutation with A†

j gives∑
j1j′

1

qj1j′
1
[Nj1Nj′

1
,A†

j ] �
∑
j′

qj′j′ [Nj′ ,A†
j ] = 2qjjA†

j , (64)

i.e. just the half of the first term at the RHS of eq. (62).
This explains the difference between eq. (58) above and
eq. (38) of ref. [6] by a factor of 2 in the denominator of
the second term at their RHS.

The energy of the first 0+ excited state ω obtained
solving the QRPA equation with the matrices (58)–(61)
has the form

ω1 = 2∆

√(
1 − 3

4Ω

)(
1 − ∆2

4G2Ω3

)
. (65)

The energy of the spurious state in this case is imaginary.
If one uses the approximation (64) instead of (62), the
positive solution is given by ref. [6] as

ω01 = 2∆

√
1 − 1

2Ω
, (66)

while the energy of the spurious state is exactly zero. Ne-
glecting the q-term in (7) yields the energy of the first 0+

state as

ω0 = 2∆

√(
1 − 1

4Ω

)(
1 +

∆2

4G2Ω3

)
. (67)

There are two features of the fermion formalism, which
are worth noticing here. The fact that in the process of
linearizing the equation of motion, the exact commuta-
tion relations (9) and (10) have been used to calculate the
commutators [H,A†

j ] and [H,Aj ] does not reduce matrices
(57) by setting qjj′ = 0 to those given within the boson
formalism (42). The difference in Bjj still remains. An-
other feature is that, when the q-term in (7) is omitted,

the spurious mode in the fermion formalism is shifted to
a positive value equal to

ωs
0 = ∆

√
1
Ω

(
1 − ∆2

4G2Ω3

)
. (68)

However it is much smaller than the pairing gap ∆ espe-
cially at large Ω, therefore, remains well isolated. Compar-
ing eqs. (65)–(67) with the boson energy ω

(b)
QRPA (eq. (47)),

it is easy to see that

ω1 < ω01 < ω0 < ω
(b)
QRPA = 2∆ . (69)

The ground-state energy is now calculated following
refs. [1,6] as:

EQRPA = EBCS +
1
2

[ω − (A11 + A22)] . (70)

In the limit of zero gap, the pp-RPA equation is ob-
tained from the QRPA equation discussed above putting
∆ = 0, v = v1 = u2 =1, u = u1 = v2 = 0. The solu-
tion of this RPA equation is decoupled into the addition
and removal modes, which have been discussed in detail
in ref. [2,6]. In the present two-level model, these two sets
of equations can be written in one matrix equation as(

A11 B12

B12 A22

)(
R

(τ)
p

R
(τ)
h

)
=

(
1 0
0 −1

)(
R

(τ)
p

R
(τ)
h

)
ωτ ,

(τ = 1, 2 ) , (71)

where

A11 = ε + 2λ + 2G−GΩ ,

A22 = ε− 2λ−GΩ , B12 = GΩ , (72)

and R
(1)
p = Xa , R

(1)
h = Ya , R

(2)
p = Yr , R

(2)
h = Xr ,

ω1 = ωa , and ω2 = −ωr . The energies ωa and ωr are
found as

ωa = −G− 2λ±
√

(ε + G)(ε + G− 2GΩ) , (73)

ωr = G + 2λ±
√

(ε + G)(ε + G− 2GΩ) , (74)

where only the sign + in front of the square roots corre-
sponds to the positive values for these energies. Here we
still keep the factor ±2λ, which is useful to connect the
RPA solutions with the QRPA one at the critical point
G = Gcr, where 2λ = −Gcr according to eq. (20).

In order make a comparison with the boson formalism,
where there is only one boson state, we apply the sum-rule
method, representing the RPA phonon operator as

Q† = Q†
a + Q†

r . (75)

The RPA ground-state wave function |RPA〉 can be writ-
ten as a direct product of the ground-state wave functions
of the (orthogonal) additional and removal modes

|RPA〉 = |0〉a ⊗ |0〉r . (76)
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Using the Thouless theorem for the energy-weighted sum
rule S1 [2] with respect to the phonon operator Q† (75)

S1≡
∑

i

ω
(i)
RPA|〈νi|Q†|RPA〉|2 =

1
2
〈HF|[Q†, [H,Q†]]|HF〉,

(77)
it is easy to see that the LHS of eq. (77) is equal ωRPA

since |νi〉 = Q†|RPA〉 (i = 1), while the RHS is equal to

1
2

[〈HF|[Q†
a, [H,Q†

a]]|HF〉 + 〈HF|[Q†
r , [H,Q†

r ]]|HF〉] =

ωa|〈νa|Q†
a|RPA〉|2 + ωr|〈νr|Q†

r |RPA〉|2 =

ωa|〈νa|νa〉|2 + ωr|〈νr|νr〉|2 = ωa + ωr . (78)

(The crossing terms 〈HF|[Q†
i , [H,Q†

i′ ]]|HF〉 (i �= i′) vanish
as can be easily checked using 〈i|i′〉 = δii′ .) Therefore

ωRPA = ωa + ωr . (79)

The ground-state energy is then given by

ERPA = EHF +
1
2

(ωRPA −A11 −A22) =√
(ε + G)(ε + G−2GΩ) − (ε−GΩ + G) , (80)

which is exactly the same expression obtained previously
in eq. (45) of ref. [6].

The energies of the ground state and the first 0+ state
obtained within the fermion formalism of RPA and QRPA
for Ω = 4 are compared with the exact energies in fig. 2.
The figure shows that, in the superfluid regime, except
for the region close to the critical point G = Gcr where
the QRPA collapses, the approximation (64) fits the ex-
act result for the ground-state energy better than (62). For
the energy of the first 0+ state, both of the QRPA ver-
sions, which include the q-term of the Hamiltonian (7) give
practically the same values. However, they are obviously
smaller compared to the exact solution. This discrepancy
increases with increasing the interaction. From eqs. (65)–
(67) we found that, in the limit of infinite G the solution
ω0 (q-term neglected) becomes 2∆

√
1 − 1/4Ω � 3.88∆,

while the solutions ω1 based on the approximation (62),
and ω10 based on (64) [6] are equal to 0.96ω0 and 0.93ω0,
respectively. The only QRPA approximation that fits well
the exact results for both of the ground-state and excited-
state energies is the one which neglects the q-term of the
Hamiltonian (7). The results within this approximation
practically coincide with the exact ones at large G. The
RPA energy ωRPA = ωa + ωr of the first 0+ state exhibits
the well-known behavior. It decreases with increasing G
and collapses at the same critical point G = Gcr, from
which the the normal-fluid phase ceases to exist, and the
superfluid phase begins. Meanwhile, the exact solution for
the first excited state has only a bending in this region,
showing no signature of such phase transition. For the
ground-state energy the exact result shows a completely
smooth curve, while the critical point is clearly seen in the
approximations.

As shown in fig. 3 for Ω = 4, the QRPA energy ω0

obtained without the q-term of (7), and the RPA energy
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Fig. 2. The ground-state energy (a) and energy of the first
excited state (b) (in units of 2ε) as functions of GΩ/(2ε). The
thick solid line is the exact result. The thin solid line shows the
QRPA result neglecting the q-term in the Hamiltonian (7). The
dashed line denotes the QRPA result of ref. [6]. The dotted line
stands for the result obtained using the matrices (58)–(61). The
dash-dotted line represents the RPA result.

ωRPA also match well the solutions of the boson formalism,
especially after shifting Gcr = G

(b)
cr in the latter to the

value of ε/(2Ω − 1) used in the fermion formalism due to
the inclusion of the self-energy term (eq. (24)).

4.2 Renormalized QRPA

The collapse of the BCS approximation and QRPA (RPA)
has the same origin of neglecting the Pauli principle be-
tween quasiparticle-pairs operators in the BCS approx-
imation (26) and the quasiboson approximation strictly
(36) or in average (55). The LN method approximately
corrects this inconsistency within the BCS approximation.
For the QRPA this is done by the renormalized QRPA.

The essence of the renormalized QRPA is to replace
the quasiboson approximation in the form of eqs. (36) or
(55) with the average value of the commutator

〈0̃|[Aj ,A†
j′ ]|0̃〉 = Djδjj′ , Dj = 1 − 2nj , (81)

in a new ground state |0̃〉, where the correlations beyond
the QRPA due to the fermion structure of the quasiparti-
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Fig. 3. The energy of the first 0+ state (in units of 2ε) given
by the boson formalism (dashed line) in comparison with those
obtained within the QRPA (thin solid line) neglecting the q-
term of the Hamiltonian (7), RPA as the sum ωa + ωr (dash-
dotted line), and the exact solution (thick solid line) for Ω = 4.
In (a) the boson energy (eqs. (47) and (53)) has been obtained

using Gcr = G
(b)
cr = ε/2Ω (neglecting the self-energy term).

In (b) the boson energy has been calculated using the value
Gcr = ε/(2Ω − 1) obtained including the self-energy term.

cle pairs A†
j and Aj are taken into account, namely

nj =
1

2Ωj
〈0̃|Nj |0̃〉 �= 0 , (82)

instead of the assumption (56). The phonon operators are
renormalized as

Qν =
∑

j

1√
Dj

(X (ν)
j A†

j − Y(ν)
j Aj) , Qν = (Q†

ν)† ,

(83)
so that the condition for phonons to be bosons within the
correlated ground state |0̃〉

〈0̃|[Qν ,Q†
ν′ ]|0̃〉 = δνν′ (84)

leads to the same normalization condition for the am-
plitudes X (ν)

j and Y(ν)
j as that of the QRPA, i.e.∑

j(X (ν)
j X (ν′)

j − Y(ν)
j Y(ν′)

j ) = δνν′ . The factor Dj is cal-
culated according to the approximation in ref. [16] as

Dj =
1

1 + (Y(ν)
j )2/Ωj

. (85)

The renormalized-QRPA matrices Ajj′ and Bjj′ are given
as

Ajj′ = 2(Ej + 2qjj)δjj′

+4
∑
j”

Ωj′′qj′j′′(1 −Dj′′) + Djdjj′ , (86)

Bjj′ = 2
(
Dj − 1

Ωj
δjj′

)
hjj′ . (87)

Since only the omission of the q-term in (7) within the
QRPA reproduces well the exact solution in the present
two-level model at large values of G, we discuss below only
the case when qjj′ =0. The renormalized QRPA matrices
in this case read

A11 = A22 = GΩ(2 −D) +
D∆2

2GΩ2
,

A12 = A21 = − ∆2

2GΩ
(4 − 3D) , (88)

B11 = B22 = − ∆2

2GΩ2
+

D∆2

2GΩ
,

B12 = B21 = D

(
GΩ − ∆2

2GΩ

)
. (89)

The energy of the first excited 0+ state is found as

ωRQRPA =

2∆

√[(
D − 1

4Ω

)
+

G2Ω2(1 −D)
∆2

](
1 +

∆2

4G2Ω3

)
,

(90)

By setting Dj = 1 (nj = 0) in eqs. (88)–(90), the QRPA
limit in eqs. (58)–(61) (without the second term at the
RHS of (58) since the q-term is neglected), and ω0 given by
eq. (67) are recovered. The ground-state energy is calcu-
lated using eq. (70), the energy ωRQRPA given by eq. (90),
and the matrices A11 = A22 given by eq. (88).

The renormalized RPA matrices (G < Gcr) are given
as

A11 = ε + 2G−DGΩ ,

A22 = ε−DGΩ , A12 = A21 = 0 , (91)
B11 = B22 = 0 , B12 = B21 = DGΩ . (92)

The positive renormalized RPA phonon energies are found
as

ω̃a = −G− 2λ +
√

(ε + G)(ε + G− 2DGΩ) . (93)

ω̃r = G + 2λ +
√

(ε + G)(ε + G− 2DGΩ) , (94)

ωRRPA = ω̃a + ω̃r = 2
√

(ε + G)(ε + G− 2DGΩ) , (95)

and the ground-state energy is

ERRPA =
√

(ε + G)(ε + G− 2DGΩ) − (ε + G−DGΩ) .
(96)
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Fig. 4. The energies of the ground state (left panels) and of the first 0+ excited state (right panels) (in units of 2ε) at several
values of Ω. The thick solid line is the exact result. The dotted line is the QRPA result using the matrices (58)–(61). The
dash-dotted line denotes the RPA result. In (a)–(c) the dashed line shows the LN result, while the thin solid line represents the
ground-state energy calculated according to ii) of subsect. 4.3. In (d)–(f) the dashed line stands for renormalized QRPA result
using the LN pairing gap and neglecting the q-term in (7); the double-dash-dotted line represents the renormalized RPA result;
the thin solid line is the energy ω0+ according to eq. (97).

As has been shown in ref. [16], the presence of the factor D
in the renormalized RPA matrices reduces the interaction
in such a way that the critical point where the RPA col-
lapses is completely washed out. The energy ω̃a, ω̃r, and
consequently, ωRRPA are always real. As for the renormal-
ized QRPA, the presence of the pairing gap ∆ makes it
still collapse if ∆ is calculated within the BCS (eq. (21)),
but it is no longer the case if the LN pairing gap ∆LN (28)
is used.

4.3 LN method + renormalized RPA (renormalized
QRPA)

We have seen in the preceding sections that the LN
method allows us to avoid the phase transition of the BCS
approximation, the QRPA without the q-term in (7) pro-
vides us with the best fit of the exact results for the en-
ergies of the ground state and the first excited 0+ state,
while the renormalized RPA is known to smear out the
collapse of the RPA due to the violation of the Pauli prin-

ciple within the quasiboson approximation [16]. Therefore,
in order to avoid the phase transition and to give at the
same time a good description for both of the energies of
the ground state as well as the fist excited 0† state, we
propose here the following recipe.

i) The QRPA equations (without the q-term in (7))
are solved using the pairing gap ∆LN (28) found in the
LN method.

ii) The ground-state energy is calculated using eq. (70),
in which the LN pairing gap ∆LN is used instead of the
BCS gap ∆ (21) and the renormalized QRPA matrices
given by eq. (88) are used instead of eq. (58).

iii) The first excited 0+ state is presented as a mixed
state of those obtained within the renormalized RPA
and renormalized QRPA (in i)). Applying the sum-rule
method and following a derivation similar to eqs. (76)–
(78), we find that the energy ω0+ of this mixed state is
the sum of the renormalized RPA and renormalized QRPA
energies, namely

ω0+ = ωRRPA + ωRQRPA , (97)
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where ωRRPA and ωQRPA are given by eqs. (95) and (90),
respectively, with ∆LN used in the latter. The results ob-
tained using this recipe will be referred to as the combined
results.

The combined results for the ground-state energy and
the energy of the first excited 0+ state are presented as
thin solid lines in fig. 4 at several values of Ω in compari-
son with the exact results and those of RPA, QRPA and
their renormalized versions. The result obtained within
the renormalized RPA and the combined result i) for
the energy of the first excited 0+ state show that the
superfluid-normal phase transition is completely washed
out. For the ground-state energy, the combined result ii)
is closer to the exact one compared to the LN result in
the weak-coupling region (G 
 Gcr) and in the region
around Gcr. It coincides with the LN and exact results in
the strong-coupling region (G � Gcr) (see the thin lines
in fig. 4 (a)–(c)). The combined result iii) agrees reason-
ably well with the exact results (see the thin lines in fig. 4
(d)–(f)), especially for larger Ω. Hence, this numerical test
confirms the validity of the assumption iii) that the exact
excited 0+ state may be considered as a mixed state where
both of the normal and superfluid phases coexist at G �=
0. The weak-coupling region is dominated by the normal-
fluid phase, where the energy ω0+ of the first excited 0+

state decreases monotonously with increasing the pairing
interaction G. The strong-coupling region is dominated by
the superfluid phase, in which ω0+ increases with increas-
ing G.

5 Conclusions

In this work, a schematic model of two symmetric levels
interacting via a pairing force has been used to test several
well-known approximations by calculating the ground-
state energy and the energy ω0+ of the first excited 0+

state. Results obtained within the BCS approximation,
LN method, boson and fermion formalisms for RPA and
QRPA, renormalized RPA, and renormalized QRPA have
been analyzed in details. It is shown that the common ver-
sion of the QRPA, which neglects the scattering term (the
q-term of the Hamiltonian (7)) and the boson formalism
give the closest results to the exact ones for both of the
ground-state energy and ω0+ at the values of the pairing
interaction parameter G � Gcr. Meanwhile, the QRPA
version used in ref. [6] as well as the QRPA using the ex-
act commutation relations between quasiparticle-pair op-
erators to treat the scattering term do not describe well
the energy of the first excited 0+ state at large G.

A recipe has been proposed which combines the re-
sults obtained within the LN method for the pairing gap
∆LN, the renormalized RPA, and the renormalized QRPA
neglecting the last term (q-term) of the Hamiltonian (7).
The combined results agree reasonably well with the ex-
act ones for both of the ground-state energy and ω0+ ,
showing no signature of a sharp superfluid-normal phase
transition. The agreement is better at a larger particle
number. The results suggest that the exact excited 0+

state can be decomposed approximately into two com-
ponents, which correspond to the normal and superfluid
regimes, respectively. The weak-coupling region is domi-
nated by the normal-fluid phase, while the strong-coupling
region by the superfluid phase. Since the proposed scheme
is based on rather simple, well-known, and numerically
accessible approximations, its future extension toward an
application in realistic nuclei may be useful.

For a more self-consistent approach, one can derive
the set of RPA equations using the Hamiltonian (7) with
the coefficients uj , vj , X

(ν)
j and Y

(ν)
j left as variational

parameters when minimizing the average energies over the
ground state and the first excited 0+ state. This may serve
as a goal of the future study.

Thanks are due to V. Zelevinsky for reading the manuscript,
valuable comments and suggestions.
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